Selenium in the Prevention and Treatment of Thyroid Disorders

Throid gland in the neck
The thyroid gland is an endocrine gland in the front of the neck just below the Adam’s apple. It consists of two lobes connected by the thyroid isthmus. Selenium deficiency and less than optimal activity of the selenoproteins may be a factor in autoimmune thyroid diseases.  https://commons.wikimedia.org.

A 2017 summary of the research literature supports the idea that optimal selenium levels are needed for antioxidant protection against harmful free radicals in the thyroid gland and for the normal metabolism of thyroid hormones [Ventura 2017].

A 2018 research literature review shows that selenium supplementation can reduce anti-thyroperoxidase antibody levels and can improve thyroid ultrasound features. In addition, selenium supplementation is associated with improved symptoms and improved quality of life in patients with Graves orbitopathy [Santos 2018].

Note: Anti-thyroperoxidase antibody levels that are too high (>500 IU/ml) are associated with an increased risk of hypothyroidism in autoimmune thyroiditis, which is the most common form of thyroid disorder [Ehlers 2016]. read more

Selenium and Coenzyme Q10 for Senior Citizens

Professor Urban Alehagen
Like a good detective inspector, Professor Urban Alehagen has investigated the biological mechanisms that could explain how combined selenium and Coenzyme Q10 supplementation reduces the risk of death from heart disease in senior citizens. Among the suspects that he has investigated are oxidative stress, systemic inflammation, fibrosis, and endothelial function.

Four years of daily supplementation with 200 micrograms of a patented high-selenium yeast and 200 milligrams of Coenzyme Q10 (in divided doses: 2 x 100 milligrams) has lowered the risk of dying from cardiovascular disease significantly by 54% (p=0.02) [Alehagen 2013].

The study participants were senior citizens aged 70-88 years (average age: 78 years) who were still able to live at home.

Professor Urban Alehagen and a team of researchers from Linköping University in Sweden randomly assigned the senior citizens to take the active treatment (selenium plus Coenzyme Q10) or matching placebos in a double-blind clinical study named the KiSel-10 Study [Alehagen 2013].

Improved Heart Function with Coenzyme Q10 and Selenium

Compared to the senior citizens in the placebo group, the senior citizens in the active treatment group had a significant improvement in heart function as measured on echocardiograms compared to placebo (p=0.03) and a significant improvement in a biochemical marker, NT-proBNP (p=0.014). NT-proBNP is a reliable indicator for heart disease; the heart muscle typically produces more of the NT-proBNP protein whenever the heart is exposed to stress or injury [Alehagen 2013]. read more

Selenium and Mercury Toxicity

A plate of salmon.
Eating fish will give pregnant women and children selenium and other nutrients that will promote the children’s growth and development. Eating fish may give adults heart health benefits. However, some ocean fish contain more mercury than selenium and should therefore be avoided. Consequently, the US Food and Drug Administration advises against eating meals from predatory whales, sharks, swordfish, king mackerel, marlin, orange roughy, tilefish, and big-eye tuna. Most other ocean fish will have more selenium than mercury in their tissues and should be safe, even advisable, to eat.

The selenium in our cells is the molecular “target” of toxic mercury. Inhibition of the normal biological activity of seleno-enzymes is the mechanism by which mercury damages our cells, most particularly our brain and nerve cells [Ralston & Raymond 2018].

Conceiving of selenium as the “target” of mercury leads to a better understanding of mercury toxicity than the old theory of selenium as the “tonic” that binds toxic mercury in a form that is no longer harmful [Ralston & Raymond 2018].

Professor Nicholas Ralston and consultant Lisa Raymond have done a review of the research literature about the characteristics of mercury toxicity to identify the selenium-dependent aspects of mercury’s biochemical mechanisms and effects. Their conclusions [Ralston & Raymond 2018]: read more