Selenium and Mitochondrial Disorders and Telomere Attrition

Selenium supplements may be beneficial as an adjuvant treatment for patients with mitochondrial disorders. This is especially true in many parts of Europe and the Middle East where the soil and the foodstuffs have poor selenium content [Stoffaneller & Morse 2015]. Specifically, individuals with mitochondrial dysfunction need the antioxidant and anti-inflammation effects of selenium-dependent selenoproteins [Alehagen 2021; Opstad 2022].

Prof Jan Aaseth
The mitochondria are the organelles in our cells that generate the ATP energy that our cells need to function. They are our essential mini power plants. However, mitochondrial dysfunction is associated with generation of toxic oxygen, telomere shortening, cell death, and biological aging. Pictured: Prof. Jan Aaseth, MD, PhD, Innlandet Hospital & Inland Norway University of Applied Sciences.

Mitochondrial dysfunction can be defined as the diminished capacity of the mitochondria in the cells to convert sugars into energy, i.e., the diminished capacity of the cells to generate ATP energy [Miwa 2022].

Mitochondrial dysfunction is closely associated with biological aging and with cell senescence (the cessation of cell division) [Miwa 2022]. read more

Selenium Status and Immune Function

Selenium is one of the micronutrients known to have an important and specific impact on immune system activity.

T-helper cell
Administration of selenium enhances the immune response of T-helper 1 cells and the stimulation of T cells. Depicted here: T-helper cell. Selenium also acts as a co-factor to achieve a more effective immune response to COVID vaccination.

In a 2022 review, Munteanu and Schwartz summarize the relevant research data on the modulation of immune function by micronutrients, including selenium and zinc [Munteanu 2022].

For selenium, the authors find the following evidence of a beneficial effect of selenium on immune system function:

  • Selenium, as a component of the amino acid selenocysteine, improves the synthesis of inflammatory mediators.
  • Selenium treatment leads to a decline in the gene expression of the pro-inflammatory cytokines IL-1 and TNF-alpha. This indicates that selenium has an anti-inflammatory effect in the body.
  • Selenium enhances the immune response of T-cells and T-helper 1 cells. T-cells work to destroy cells that have been infected by bacteria or viruses. Th1 cells are also responsible for fighting against bacteria and viruses.
  • Selenium supplementation increases the concentration of antibodies that enhance vaccine effects.
  • Selenium acts as a co-factor in the immunity that is mediated by the influenza vaccine. Selenium also serves as a co-factor to achieve a more effective immune response to COVID vaccination.
  • Selenium contributes to the defense against bacterial and vital pathogens through its effects on redox signaling activities.
  • -Selenium supplementation of patients with cancer increases antibody concentrations of the immunoglobulins IgA and IgG as well as increases the number of neutrophils.

Selenium – A Crucial Micronutrient for a Functional Immune System

Munteanu & Schwartz [2022] make the following additional points about an adequate supply of selenium:

  • Selenium improves not only in the functioning of the immune system but also the functioning of thyroid metabolism and the functioning of the cardiovascular system.
  • Selenium may play a role in the prevention of some forms of cancers.

Selenium and COVID-19

Munteanu & Schwartz [2022] report that selenium together with zinc exerts a protective role in COVID-19 patients. The combination of selenium and zinc is associated with a higher chance of survival. read more