Selenoprotein P – Selenium Transport Protein and Biomarker of Selenium Status

Selenium and selenoproteins are essential to human health [Rayman 2012]. However, selenium intakes from food vary considerably from region to region in the world, depending on how rich or poor the soil and the foodstuffs are.

Selenium researcher Professor Urban Alehagen
Professor Urban Alehagen realized that the low selenium content of the soil in Sweden and in much of Europe results in wide-spread low dietary selenium intake and selenium deficiency. In the Swedish KiSel-10 Study, the average serum selenium concentration was a quite low 67 mcg/L.

For example, widespread suboptimal selenium status has been reported throughout Europe, the UK, and the Middle East [Stoffaneller & Morse 2015]. In contrast, the soil and the foodstuffs in much of the United States and Canada have a much higher selenium content than is the case in Europe. Serum selenium levels of US citizens are generally above 120 mcg/L. In many European countries, the corresponding serum selenium levels are 90 mcg/L on average [Alehagen 2016].

  • The best estimate for serum selenium status that is sufficient for good health is around 125 mcg/L [Winther 2020, fig. 3].
  • Serum selenium levels below 70 mcg/L are indicative of selenium deficiency [Bomer 2020].
  • Serum selenium levels below 100 mcg/L are indicative of sub-optimal selenium status [Al-Mubarak 2021].
Selenoprotein P as the Major Selenium Transport Protein

Dietary selenium is incorporated into the amino acid selenocysteine, which becomes an integral component of 25 selenoproteins. The best known selenoproteins are the glutathione peroxidases, thioredoxin reductases, and
iodothyronine deiodinases [Schomburg 2019]. read more