Selenium and Coenzyme Q10 Supplementation for Senior Citizens

In senior citizens, and delayed aging and longevity are associated with the antioxidant and anti-inflammatory protection derived  from daily supplementation with selenium and Coenzyme Q10 [Alehagen 2023].

Elderly couple dancing
Daily supplementation with selenium and Coenzyme Q10 seems to have a positive influence on longevity and delayed aging.

The KiSel-10 Study was a randomized, double-blind, placebo-controlled clinical trial of the effect of combined selenium and CoQ10 supplementation of senior citizens on cardiovascular mortality.

Researchers administered 200 micrograms of selenium in a selenium-rich yeast preparation and 200 milligrams of Coenzyme Q10 in the ubiquinone form or matching placebos to community living senior citizens daily for 48 months [Alehagen 2013].

Summary of Statistically Significant KiSel-10 Study Outcomes
  • reduction of cardiovascular mortality in the active treatment group vs. the placebo group (5.9% vs. 12.6%) and better cardiac function observed on echocardiograms in the active supplementation group compared to the placebo group [Alehagen 2013]
  • reduction of plasma levels of the N-terminal natriuretic peptide (NT-proBNP), a bio-marker for increased risk of heart failure [Johansson 2013]
  • improvement of health-related quality of life and fewer days in hospital [Johansson 2015]
  • reduction of cardiovascular mortality in senior citizens with low serum selenium status [Alehagen 2016a; Alehagen 2016b]
  • reduction of cardiovascular mortality that persisted after 10 and 12 years in the supplemented group and in subgroups with diabetes, hypertension, ischemic heart disease, and reduced functional capacity due to impaired cardiac function [Alehagen 2015a; Alehagen 2018]
  • reduction of plasma levels of two bio-markers for oxidative damage [Alehagen 2015c]
  • reduction of plasma levels of six bio-markers for systemic inflammation [Alehagen 2015b; Alehagen 2019b]
  • reduction of serum levels of seven bio-markers for fibrosis [Alehagen 2017b]
  • reduction of plasma levels of bio-markers for endothelial dysfunction [Alehagen 2020c]
  • increase in plasma levels of insulin-like growth factor-1, attenuating an age-related decline in IGF-1 concentrations [Alehagen 2017a]
  • reduction of fructosamine concentration compared with the concentration in the placebo group, which tended to increase, important because fructosamine concentration is positively associated with incidence of diabetes and increased blood glucose level [Alehagen 2020b]
  • improvement of renal function in elderly citizens deficient in selenium [Alehagen 2020a]
  • prevention of an increase in D-dimer levels, which are associated with increased risk of thrombotic disorders [Alehagen 2021]
  • association with significant changes in metabolic profiles and with significant changes in the pentose phosphate, the mevalonate, the beta-oxidation, and the xanthine oxidase pathways [Alehagen 2019a]
  • association with significant changes in circulating microRNA [Alehagen 2017c]
  • structural equation modelling that shows that antioxidant and anti-inflammatory effects are the primary underlying biological mechanisms to explain the success of the KiSel-10 study [Alehagen 2022b]
  • decrease in concentrations of fibroblast growth factor 23 (FGF-23) [Alehagen 2022a]
  • less shortening of leukocyte telomere length [Opstad 2022]
  • increase in serum SIRT1 concentrations [Opstad 2023]
  • improvement in serum free thiol levels, supporting a reduction in systemic oxidative stress [Dunning 2023]
  • positive effects on five age-related blood biomarkers – ICAM-1, adiponectin, leptin, stem cell factor, and osteoprotegerin – indicating an anti-aging direction compared to placebo [Alehagen 2023].
Conclusion: Delayed aging and longevity associated with Selenium and Coenzyme Q10 for senior citizens

Professor Urban Alehagen and Professor Jan Aaseth have explained an important biological interrelationship between selenium and Coenzyme Q10 and pointed to a theoretical advantage in using both substances in an intervention if there are deficiencies within the population [Alehagen 2015d]. read more

Selenium and Systemic Oxidative Stress

Oxidative stress. A new study shows that selenium supplementation together with Coenzyme Q10 supplementation reduces the levels of systemic oxidative stress in the body.  In the study, the reduction of systemic oxidative stress is significantly associated with a reduction in the risk of death from cardiovascular diseases [Dunning & Alehagen 2023].

Prof Urban Alehagen
Prof. Urban Alehagen, lead researcher on the KiSel-10 Study, the study that has shown that combined selenium and Coenzyme Q10 supplementation reduces oxidative stress and inflammation levels, improves heart function, and reduces the risk of cardiovascular disease mortality.

Oxidative stress: An imbalance of harmful free radicals vis-à-vis protective antioxidants leads to oxidative damage to DNA, lipids, and proteins in the body and to a disruption of redox signaling processes in the cells [Dunning & Alehagen 2023].

In a 2023 KiSel-10 sub-analysis, Prof. Urban Alehagen and his research colleagues investigated the level of free thiols in the serum of elderly study participants taking 200 mcg of selenium and 200 mg of Coenzyme Q10 daily for 48 months [Dunning & Alehagen 2023]. read more

Selenium Supplementation for Senior Citizens

Health benefits of daily supplementation of senior citizens with a combination of selenium and Coenzyme Q10:

  • improved heart function as shown on echocardiograms
  • reduced risk of death from heart disease
  • improved health-related quality of life
Professor Urban Alehagen
In the KiSel-10 Study, Prof. Urban Alehagen and the research team administered 200 mcg/day of selenium and 2 x 100 mg/day of Coenzyme Q10 for 48 months to elderly Swedish citizens whose serum selenium status at baseline was quite low (mean: 67.1 mcg/L). The duration of the study was 48 months. The benefits of the supplementation were improved heart function and reduced risk of death from heart disease.

The combined supplementation seems to work by reducing the extent of oxidative stress, systemic inflammation, and fibrosis in the study participants [Alehagen 2022a].

Now, data from the KiSel-10 Study show the following effects of the combined supplementation with respect to Fibroblast Growth Factor 23 concentrations in blood:

  • Supplementation decreased concentrations of FGF-23 hormones.
  • The study showed a relationship between the circulating level of the FGF-23 and atrial fibrillation.
  • The study showed an association between the concentration of FGF-23 and death from heart disease.
  • The study showed an effect of reduced FGF-23 levels on the risk of death from heart disease that is independent of the level of the cardiac wall tension bio-marker NT-proBNP.
  • There exists a close interrelationship between FGF-23 concentrations and kidney function.
Why are FGF-23 Concentrations Important?

Prof. Alehagen explains that FGF-23 is a hormone that is secreted into the blood circulation. One of its primary functions is the regulation of the vitamin D metabolism and of the phosphorous metabolism in the kidneys.

However, there seems to be an association between FGF-23 activity and cardiovascular mortality even in the absence of kidney disease. Experimental data show that FGF-23 may act as a mediator for cardiac hypertrophy, cardiac fibrosis, and cardiac dysfunction [Alehagen 2022b]. read more

Antioxidant Action of Selenium and Selenoproteins

Antioxidants. Several selenoproteins play important roles as antioxidant enzymes in the protection of the cells and the mitochondria against the oxidative damage caused by harmful free radicals. Prominent among the antioxidant seleno-enzymes are the glutathione peroxidases and the thioredoxin reductases [Alehagen 2022].

Professor Urban Alehagen
Professor Urban Alehagen, the lead researcher on the KiSel-10 Study, estimates that a daily selenium intake of 110-150 mcg per day is necessary to achieve optimal expression of selenoprotein P, one of the most important selenoproteins in the plasma and the main transporter of selenium in the blood [Alehagen 2022].
Note: Oxidative stress is the bio-medical term for an imbalance in the relationship of 1) harmful free radicals, mostly of the reactive oxygen species, and 2) protective antioxidants, which should neutralize the harmful free radicals.

In many regions of the world, notably in much of Europe and the Middle East, there is selenium-poor soil and selenium-poor foodstuffs. In Sweden, for example, the average daily intake of selenium among senior citizens
is approximately 35 mcg/day, well below the amounts (110–150 mcg/day) needed for an optimal expression of the selenoprotein antioxidants [Alehagen 2022].
read more

Selenium Deficiency and Heart Failure

Heart failure – the inability of the heart muscle to pump a sufficient quantity of blood out to the body – is a debilitating disease, resulting in shortness of breath, congestion in the lungs, and pooling of blood in the lower extremities. Heart failure is equivalent to diminished quality of life.

Mitochondrion
Depiction of a mitochondrion. The mitochondria in our cells convert energy sources such as fatty acids, glucose, and ketones into ATP energy molecules. Sufficient intakes of micronutrients such as selenium, Coenzyme Q10, and zinc are important for mitochondrial energy production and for antioxidant protection of cells, lipids, proteins, and DNA.

The prognosis for heart failure is poor, and the available medical therapies for patients with heart failure are inadequate. New treatment strategies are needed [Mortensen 2015].

Yin et al have analyzed the data from 39,757 adults in a cross-sectional study from the 2005–2018 US National Health and Nutrition Examination Survey. Their findings suggest that high levels of combined dietary antioxidant micronutrients are associated with decreased prevalence of various forms of cardiovascular disease and that selenium has the greatest contribution to this association [Yin 2022]. read more

Selenium and Coenzyme Q10 Combination

The Swedish cardiologist Dr. Urban Alehagen has written persuasively that there exists a special inter-relationship between selenium and Coenzyme Q10 in the prevention of cardiovascular diseases.

Professor Urban Alehagen
Professor Urban Alehagen lecturing about the therapeutic cardiovascular benefits of combined selenium and Coenzyme Q10 supplementation.

Briefly, Prof. Alehagen, together with the Norwegian professor Jan Aaseth, makes the point that low selenium intakes and status could restrict the cells’ ability to get optimal concentrations of Coenzyme Q10 and that the cells need adequate of Coenzyme Q10 to permit optimal function of selenium [Alehagen & Aaseth 2015a].

The clinical outcomes of the KiSel-10 intervention study in which community living Swedish citizens, average age 78 years, were administered selenium and Coenzyme Q10 daily for four years show that combined selenium and Coenzyme Q10 supplementation, compared to placebo treatment, can be beneficial in populations that have low selenium status: read more