Selenium and Selenoprotein P and Mortality

Higher all-cause mortality and higher mortality due to cancer, cardiovascular disease, gastrointestinal diseases, and respiratory disorders are associated with lower serum selenoprotein P concentrations in older German adults [Schöttker 2024].

Operation table
Death from all causes and death specifically caused by cancer, cardiovascular disease, gastrointestinal diseases, and respiratory disorders are strongly associated with low serum concentrations of the selenium-dependent selenoprotein P.

In plain English, lower blood concentrations of the selenium-dependent selenoprotein P are significantly associated with a higher risk of degenerative disease progression and with dying. Moreover, the data from the German study show that the risk of dying associated with low blood Selenoprotein P levels was more than double in men compared to women [Schöttker 2024].

In the Esther Study, German researchers assessed the association of measurements of serum Selenoprotein P concentrations with all-cause and cause-specific mortality data. They measured serum Selenoprotein P at baseline and again at a 5-year follow-up in 7,186 and 4,164 participants, respectively [Schöttker 2024]. read more

Selenium Status and Covid-19 Patients

In cases of severe Covid-19 disease, patients have significantly lower concentrations of selenium and selenoprotein P and significantly higher levels of oxidative stress. That is to say, there is a more intense formation of harmful free radicals in patients with severe Covid-19 disease [Skesters 2022].

Corona virus
An adequate supply of selenium and zinc and vitamin D is essential for resistance to the corona viruses and to other viral infections. Here, Skesters er al show that Covid-19 patients have significantly lower levels of plasma selenium and selenoprotein P and significantly higher levels of oxidative stress.

Note: Oxidative stress is the bio-medical term for an imbalance between harmful free radical activity and protective antioxidant activity. Selenium is a key component of antioxidant selenoproteins such as the glutathione peroxidases and the thioredoxin reductases.

Role of Selenium and Selenoprotein P in Covid-19 Disease

Researchers have been investigating the role that selenium may play in reducing the severity and mortality of Covid-19 infections. Studies have shown a close relationship between low selenium status, Selenoprotein P deficiency, oxidative stress level, and Covid-19 disease incidence, severity, and prognosis [Skesters 2022]. read more